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A well-characterized set of large-scale laboratory experiments is presented, illustrating forced imbibition
displacements in the presence of irreducible wetting phase saturation in a cylindrical, homogeneous Berea
sandstone rock. Experiments are designed to operate in the regime of compact microscopic flows and large-
scale viscous instability. The distribution of fluid phases during the flow process is visualized by high-
resolution computed tomography imaging. Linear stability analysis and high-accuracy numerical simulations
are employed to analyze the ability of macroscopic continuum equations to provide a consistent approximation
of the displacement process. The validity of the equilibrium relative permeability functions, which form the
basis for the continuum model, is fundamentally related to the stability of the displacement process. It is shown
that not only is the stable flow regime modeled accurately by existing continuum models, but the onset of
instability as well as the initial unstable modes are also determined with reasonable accuracy for unstable
flows. However, the continuum model is found to be deficient in the case of fully developed unstable flows.
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I. INTRODUCTION

Two-phase flow of immiscible fluids in porous media is a
pore-scale process where the fluid movement at the micro-
scopic level is governed by the flow rate, interfacial tension,
wettability conditions, and random distribution of pore ge-
ometry and size �1,2�. The relative importance of capillary,
viscous, and gravitational forces, which act on a large num-
ber of sharp interfaces separating the fluids, determine the
overall flow characteristics. Large values of the capillary or
Bond number indicate the dominance of viscous or gravita-
tional forces, leading to the pore-scale instability regime
�3–5�. On the other hand, large capillary forces, for vanishing
values of the capillary or Bond number, give rise to the re-
gime of invasion percolation �6,7�. Both regimes, which are
characterized by fractal spaces, produce flow features that
are on the order of the pore length; which essentially pre-
cludes, as yet, an effective representation of flow at a larger,
macroscopic scale.

Flow processes that occur over length scales several or-
ders of magnitude larger than the pore size represent a wide
range of important physical applications dealing with geo-
logical fluid flow in natural rocks �8�. The capillary and
Bond numbers for these flows fall between the limiting cases
of pore-scale instability and invasion percolation �8�. For this
intermediate regime, observations of a stable and compact
flow structure at the pore scale, in some instances �9�, indi-
cate the possibility of a macroscopic flow model �10,11�. The
extension of the single-phase Darcy’s law to two-phase flow
is based on the macroscopic phenomenological representa-
tion of microscopic processes, through the relative perme-
ability parameter �12�. The applicability of the macroscopic
framework depends on the ability of relative permeability to
account accurately for pore-scale mechanisms as well as
large-scale features in the flow.

Experimental observations suggest that drainage, which is
the displacement of a wetting fluid by a nonwetting fluid, is
unstable at the pore scale as well as the macroscopic scale,

for a wide range of parameters �13–15�. On the other hand,
the reverse process of imbibition is considered to be stable at
the pore scale for the same set of parameters; hence, it may
be modeled by a macroscopic formulation �13,16�. Imbibi-
tion processes are further classified on the basis of either the
presence or the absence of irreducible wetting phase satura-
tion. The former are observed to be highly unstable at the
macroscopic level �15–17� while the latter have not been
investigated from the point of view of macroscopic stability
�18�.

Our investigation deals with imbibition-type displace-
ments in the presence of irreducible wetting phase saturation.
Within this class of two-phase flows, the applicability of Dar-
cy’s model may be limited to cases where the macroscopic
displacement is stable. However, in order to determine the
applicability, as well as to understand the limitations of the
continuum model, rigorous comparison between experiments
and the continuum model is required, which does not exist at
present. Because Darcy’s law for two-phase flow serves as
the basis for all geological flow models �19,20�, this gap in
knowledge is a serious impediment to an accurate character-
ization of field-scale processes.

The objectives of this investigation are, first, to provide a
clear visualization of large-scale unstable displacements in
real porous media along with their dependence on the capil-
lary number and the viscosity ratio; second, to evaluate the
accuracy of the stability analysis, based on experimentally
determined relative permeability functions, in terms of the
onset and the initial modes of instability; and finally, to ex-
amine and compare the results obtained from the well known
Buckley-Leverett analytical model and high-accuracy non-
linear simulations with the experimental saturation profiles
for the fully developed flow.

Either previous investigations did not attempt to evaluate
the experiments in terms of the continuum model at all
�9,14,18,21�, or the experiments were not classified on the
basis of stability and compared with the predictions of the
continuum model �22–24�. As a result, comparison of stabil-
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ity predictions with experimental results is missing. Attempts
to simulate numerically, unstable two-phase flows have been
largely unsuccessful in the past due to the lack of appropriate
numerical methods �23�. Moreover, previous efforts, by dis-
regarding capillary dispersion, suffered from spurious grid-
dependent flow structures �25�. Most importantly though,
simulations based on experimentally determined relative per-
meability functions have not been compared directly with
actual unstable displacements.

We therefore perform experiments in a homogeneous Be-
rea sandstone core, in the regimes of both stable and unstable
displacements, to determine the conditions under which the
macroscopic formulation is justified. We also highlight the
limitations of the continuum model and attempt to build a
qualitative understanding of this deficiency in order to estab-
lish a basis for further improvements in the existing model.

II. EXPERIMENTS

Imbibition experiments are performed at a constant rate in
a cylindrical Berea sandstone core in the presence of an ir-
reducible wetting phase or “connate water” saturation. Satu-
ration distributions are obtained with the computed tomogra-
phy �CT� scan procedure described below. A strongly water-
wet Berea sandstone core is selected to eliminate, as much as
possible, the effects of spatial variation in wettability. The
test sample is also required to be homogeneous with respect
to porosity and permeability, so that fundamental flow
mechanisms are analyzed without interference from hetero-
geneity. These properties ensure repeatability of the experi-
ments.

Experiments were carried out by injecting the “water”
phase, 8% NaBr solution. Five mineral oils with different
viscosities were used as the displaced “oil” phase. Properties
of the experimental fluids are listed in Table I. The viscosity
ratio is defined as M =�o /�w. All experiments were carried
out at room temperature. Gravity effects do not come into
play due to the small density difference noted in Table I.
Many of the experiments were repeated and similar results
were obtained, providing confidence regarding homogeneity
and uniform wettability of the core.

A. Visualization method

High-resolution images of the cross sections along the test
sample were obtained with CT scans. The computed tomog-

raphy scanner is a fourth-generation Picker 1200SX with a
scan resolution �i.e., voxel size� of 0.35�0.35�5 mm3.

The raw data obtained from the scanner are expressed as a
number �, which is a measure of the degree of x-ray attenu-
ation by the material. The raw � data are processed voxel by
voxel to obtain the porosity and the wetting phase saturation.
The porosity � is obtained as

� =
�wr − �ar

�w − �a
, �1�

where the subscripts wr and ar refer to water-filled and air-
filled rock, respectively, while w and a refer to bulk water
and air phases, respectively. The water saturation Sw in a
cross-sectional image is obtained as

Sw =
�wr − �owr

���w − �o�
, �2�

where owr is the oil-water phase in the rock and o is the oil
phase. More details on CT imaging are available elsewhere
�26,27�.

B. Properties of Berea sandstone

The cylindrical Berea sandstone core has length L
=52 cm and diameter D=5.1 cm. The aspect ratio of the
sample Y =D /L is about 0.1. A three-dimensional experimen-
tal sample is required to preserve the connectivity of the pore
space. Average values of porosity and permeability are
20.5% and 377 mD, respectively. Local porosity measure-
ments made with the CT scanner were found to be uniform
with a spread of ±0.03 around the independently measured
average porosity of 20.5%. Permeability values were ob-
tained from the theory of constant-area stream tubes �27�,
based on the local porosity distribution and the travel time of
the front between measurement points. The variance of per-
meability in this case is O�10−4�. These small variations in
porosity and permeability values show that the selected core
is practically homogeneous.

C. Initial conditions

The irreducible wetting phase saturation was established
by first injecting the water phase into a clean, dry evacuated
core to obtain 100% water saturation. Water was then dis-
placed by injecting oil until no more water was produced at
the outlet end. The procedure was carried out for each oil to
determine the dependence of connate water saturation on the
viscosity ratio.

Figure 1 shows water saturation at the initial condition for
different values of the viscosity ratio M. Values of saturation,
averaged over various cross sections, are plotted along the
length of the core and are found to be closely centered
around the connate water saturation Swi�0.3. The dimen-
sionless length is scaled by the total length of the sample.
Figure 1 also plots the saturation level obtained at the end of
the displacement experiment, which is the residual oil satu-
ration, Sor�0.4. The displacement of oil through water in-
jection takes place for saturations Swi�Sw�1−Sor.

TABLE I. Properties of experimental fluids.

Phase Fluid
Viscosity

�cP�
Density
�g/cm3�

Water 8% NaBr in distilled water 1.0 1.04

Oil nC10 0.97 0.73

Oil nC10 and Blandol 10.1 0.78

Oil Blandol 27.7 0.83

Oil Drakeol 155.0 0.87

Oil Avatech 550 303.0 0.89
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D. Displacement experiments

Imbibition experiments were performed starting from the
initial conditions described above. Three injection rates were
used, q=0.5, 1.5, and 3.0 cm3/min, corresponding to capil-
lary numbers of 3�10−7, 9�10−7, and 18�10−7, where the
capillary number Ca=�wU /� is based on the viscosity of the
injected fluid and the injection velocity U=4q /�D2. The
value of the interfacial tension, �, was measured to be
�40 dynes/cm for all fluid pairs.

Figure 2 plots the cross-sectional average of water satura-
tion along the length of the core, at dimensionless time t
�0.2, for different viscosity ratios with q=1.5 cm3/min

�Ca=9�10−7�. Time is made dimensionless with U /L�,
where � is the porosity. Saturation profiles for M =10.1 and
27.7 show that oil is displaced through a relatively steep
interface separating the fluids. For larger values of M, the
interface becomes more dispersed and irregular over increas-
ingly larger distances.

Figure 3 shows the three-dimensional flow profile ob-
tained by plotting saturation distribution within cross sec-
tions along the length of the core at t�0.1. Noise in the
image obtained from the CT scanner is removed by applying
a high-frequency filter, with a wave number threshold equal
to half the scanner resolution. Dark areas indicate the water
phase while lighter regions represent oil. Contours are plot-
ted at Sw=0.45. A nonuniform invasion of water into the oil
phase indicates the presence of macroscopic viscous instabil-
ity. The influence of the capillary number is shown in Figs.
3�a� and 3�b� for M =155. Both the number and the ampli-
tude of the fingers increase for q=1.5 cm3/min as compared
to q=0.5 cm3/min. A similar influence due to an increase in
the viscosity ratio is observed by comparing Figs. 3�a� �M
=155� and 3�c� �M =303�, at q=0.5 cm3/min. The dispersed
nature of the average saturation profiles in Fig. 2, is related
to the generation of large-scale viscous fingers. Displace-
ments at M =0.97 and 10.1, which are not shown, were ob-
served to be stable for all injection rates, while those at M
=27.7 were mildly unstable.

III. MATHEMATICAL MODEL

According to Darcy’s law for two-phase flow, phase ve-
locities are expressed as �28,29�,

uw = −
kkrw

�w
� Pw −

kkrc1

�o
� Po, �3�

uo = −
kkro

�o
� Po −

kkrc2

�w
� Pw, �4�

where the subscripts w and o refer to the water and oil
phases, respectively. The phase viscosities are �w and �o and
phase pressures are Pw and Po. The relative permeabilities
for the water and the oil phases, krw and kro, respectively, are
fractions of the absolute permeability k but do not vary lin-
early with Sw.

The condition of mass conservation of each phase is ex-
pressed as

�Sw

�t
+ � · uw = 0, �5�

�So

�t
+ � · uo = 0, �6�

with additional constraints

Po − Pw = Pc, �7�

Sw + So = 1, �8�

FIG. 1. Cross-sectional averages of saturation plotted along the
dimensionless length of the sample. Initial conditions around Sw

=Swi�0.3 show the connate water saturation while the maximum
values at Sw=1−Sor�0.6 indicate the residual oil saturations. Data
for different viscosity fluids form a uniform distribution around Swi

and Sor.

FIG. 2. Average saturation along the core during the displace-
ment experiment for different values of M with q=1.5 cm3/min, at
t�0.2. M =10.1 and 27.7 cases have relatively uniform fronts be-
tween the maximum and the minimum saturation. Larger values of
M lead to significantly dispersed and irregular transition zones, in-
dicating the existence of hydrodynamic instability.
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uw + uo = u . �9�

Here Pc is the capillary pressure and u is the total velocity.
The incompressibility condition requires � ·u=0.

Empirical estimation is required for both the relative per-
meability and the capillary pressure. However, we limit ex-
perimental measurements to relative permeability only �26�,
because the dependence of capillary pressure on interfacial
tension and water saturation is well characterized for Berea
sandstone �30�. Cross-coupling terms in Eqs. �3� and �4� are
neglected for small values of Ca �31�. We base our analysis
on steady-state relative permeability; other methods, based
on pore network models �32�, lattice Boltzmann simulation
�33�, and theoretical analysis �31,34� suggest avenues for ex-
ploring the dynamic relative permeability tensor. These must

be distinguished from the so-called dynamic measurements
�35� based on displacement experiments, that lump pore-
scale and macroscopic effects in a single parameter and
hence suffer from the scale dependence of the measurement
�24�.

Figure 4 plots the steady-state relative permeability as a
function of water saturation Sw for various viscosity ratios,
where krw and kro are scaled by the respective maximum
values krw

* =krw�1−Sor� and kro
* =kro�Swi�. These values are

listed in Table II. Profiles of relative permeability functions
are observed to be somewhat influenced by M.

A. Analytical solution

In the absence of variation in absolute permeability, a
one-dimensional �1D� solution �19� is obtained through the

FIG. 3. Three-dimensional representation of the displacement at t�0.1. �a� M =155, q=0.5; �b� M =155, q=1.5; and �c� M =303, q
=0.5. Viscous instability develops at these values of M and more unstable structures are produced at greater M and q. Contours are plotted
at Sw=0.45.
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Buckley-Leverett �BL� formulation �36�, neglecting capillary
pressure and the cross-coupling terms in Eqs. �3� and �4�. By
considering the dimensionless velocity of the water phase as
the fractional flow function fw,

fw =
mkrw�Sw�

mkrw�Sw� + kro�Sw�
, �10�

the mass conservation equation of the water phase is ex-
pressed as

�Sw

�t
+

�fw

�x
= 0, �11�

where time and length are made dimensionless with U /L�
and L, respectively. The mobility ratio m in Eq. �10� is given
by m=Mkrw

* /kro
* .

When fw is convex, the saturation front between the fluids
is a shock propagating with a speed equal to 1/ �1−Swi

−Sor�. On the other hand, an inflection point in the profile
gives rise to a shock for Swi	Sw	Ss and a rarefaction wave
for Ss	Sw	1−Sor. The shock saturation Ss is defined by

� dfw

dSw
�

Ss

=
fw�Ss� − fw�Swi�

Ss − Swi
, �12�

and the shock velocity vs is

vs =
fw�Ss� − fw�Swi�

Ss − Swi
. �13�

The solution of Eq. �11�, in terms of the location x�t ;Sw� for
any saturation Sw, is

x�t;Sw� = �vst , Sw � Ss,

dfw

dSw
t , Sw 
 Ss. � �14�

Figure 5 plots the normalized cumulative oil production,
Vop, as a function of dimensionless time for various values of
M and Ca. The BL solution plotted in Fig. 5 shows good
agreement with experimental results for M =27.7 for all in-
jection rates, but deviates for M =155. In view of the stability
behavior, we find that the Buckley-Leverett solution is an
accurate approximation of experimental results when viscous
instability is absent or mild. On the other hand, the 1D model
deviates from the actual solution for unstable flows. Two-
dimensional simulations with capillarity will be carried out
to determine how much of the unstable behavior can be re-
solved with the equilibrium relative permeability functions.

FIG. 4. Relative permeability vs water saturation, for the water
and the oil phases measured under steady-state conditions at differ-
ent values of M.

TABLE II. Viscosity ratio, mobility ratio, and shock mobility
ratio as given by Eq. �20�. Instability occurs for �s
1. End point
values of relative permeability are also listed.

M =�o /�w m=Mkrw
* /kro

* �s krw
* kro

*

0.97 0.07 0.07 0.07 0.85

10.1 0.1 0.26 0.049 0.83

27.7 2.0 0.98 0.045 0.79

155.0 7.12 1.84 0.035 0.78

303.0 24.23 2.12 0.06 0.74

FIG. 5. Production of oil, measured as a fraction of total oil in
the core, as a function of time. Plots are for M =27.7 �top� and 155
�bottom�. Results from the Buckley-Leverett solution, shown by the
solid line, deviate from experimental results at M =155.
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But first we carry out a linear stability analysis to determine
the onset conditions and obtain growth rates and wave num-
bers of unstable flows.

IV. STABILITY ANALYSIS

The dimensionless equations governing the stability be-
havior, in a frame of reference �=x−vst moving with the
shock velocity vs, are �37�

d

d�
�k̄rop� + k̄ro� P̄o�s − vss� = n2k̄rop − s , �15�

d

d�
	�̄Tp� + �̄T�P̄o�s
 −

1

Ca*

d

d�
� d

d�
�k̄rwP̄c��s�

= n2�̄Tp −
n2

Ca* k̄rwP̄c�s , �16�

with boundary conditions p=0, s=0 and p�=0, s�=0 at �
= ±�. �T=mkrw+kro, n is the wave number, and  is the
growth rate. Primes represent the derivative with respect to

the base saturation S̄w for k̄rw, k̄rn, �̄T, and Pc. In the case of

base-state variables S̄w, P̄o and perturbation variables s, p,
the prime denotes the streamwise gradient. The pressure and
saturation base states are given by,

S̄w� = D	vs�S̄w − Swi� − � f̄w − fw�Swi��
 , �17�

P̄o� =
1

�̄T

�k̄rwP̄c�S̄w� − 1� , �18�

with the dispersion coefficient D= �̄TCa*/ k̄rwk̄rnP̄c�. Boundary

conditions for S̄w and P̄o are S̄w=1−Sor, P̄o�=−1/ �̄T�1−Sor�
at �=−� and S̄w=Swi, P̄o�=−1/ �̄T�Swi� at �= +�.

A macroscopic capillary number appears in the above
equations, defined as

Ca* =
U�wL�S

�k�krw
*

. �19�

We take L to be the core diameter. �S=1−Swi−Sor. The cap-
illary pressure Pc is scaled with �� /k, where � is the inter-
facial tension between the fluids. The selection of the capil-
lary pressure function is based on data obtained for Berea
sandstone �30�.

By integrating Eqs. �15� and �16� across a step-function
base profile, for Ca*→�, a first-order solution is obtained as
�38�

 = n
�fw�Ss� − fw�Swi��

Ss − Swi
��s − 1

�s + 1
� , �20�

where �s=�T�Ss� /�T�Swi� and �T�1−Sor� /�T�Swi�=m. The
criterion for the onset of instability is �s
1, rather than m

1. Table II gives values of m and �s for different values of
M. Note that �s	1 for M =0.97 and 10.1 and the experi-
ments do not display instability for these values of M. A mild
instability occurs for M =27.7 for which �s�1. Only for

larger values of �s, M =155 and 303, does the level of insta-
bility becomes significant.

To obtain the full unstable spectrum at finite Ca*, we
solve an algebraic eigenvalue problem �37� for the dis-
cretized form of Eqs. �15� and �16�. Figure 6 shows the
growth rate as a function of the wave number for M =155
and 303, at different values of Ca*.

The dimensional value of the preferred unstable wave-
length is obtained as �=2�L /nm. The value of nm obtained
from Fig. 6 for the smallest injection rate, q=0.5 cm3/min,
for M =155 and 303 is nm=11.25 and 13.8 and the preferred
wavelength �=2.8 and 2.4 cm, respectively. Comparing the
preferred wavelengths for M =155 and 303 at q
=0.5 cm3/min with the saturation contours close to the inlet
at an early time, as plotted in Figs. 7�a� and 7�b�, we observe
that the width of the unstable structures is close to the esti-
mates from the linear theory, i.e., approximately two large
fingers should form. For the M =155 case, plotted in Figs.
7�c� and 7�d�, the linear theory gives the preferred wave-
lengths as �=0.8 and 0.4 cm for q=1.5 and 3 cm3/min, re-
spectively. These estimates are also close to the experimental
observations. The contours at late times in Figs. 7�e� and 7�f�
are compared with the nonlinear simulations.

V. NONLINEAR DYNAMICS

Linear stability analysis predicts the onset of instability
and also gives the preferred mode at early times with reason-
able accuracy. With the help of numerical simulation, we
now address the issue of the relevance of the continuum
model to the fully developed experimental flow. Our high-
accuracy numerical treatment of the process is based on Eq.
�23�, to ensure that all relevant length and time scales are
properly described �39,40�. The velocity fields are computed
through a stream function, with periodic boundary conditions

FIG. 6. Growth rate vs wave number curves for M =155 �solid
line� and 303 �dashed line�, at different capillary numbers under
consideration. Maximum value of the growth rate and the corre-
sponding most dangerous mode increase linearly with Ca*. The
maximum growth rate increases significantly when M is increased
from 155 to 303 but the most dangerous mode increases only
slightly.
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on saturation, vorticity, and stream function. Time integration
is performed with a fourth-order Runge-Kutta method. Nu-
merical simulations are carried out in two dimensions, be-
cause, unlike the Navier-Stokes equations, no additional flow
mechanism, such as the vorticity stretching term, arise for
the Darcy equations when going from the 2D to the 3D for-
mulation �41,42�.

Figure 8 plots saturation contours obtained numerically
for M =155 and 303 with injection rates q=1.5 and
3.0 cm3/min. Here, we revert to the domain length as the
relevant characteristic length scale. Contours are drawn at
Sw=0.45 for all plots. Unstable fingers are centered around
the mean front. Both cases have about the same number of
fingers for a given injection rate. The fingers become thinner
for the higher injection rate. Linear theory predicts a much
greater growth rate for M =303, which is reflected by a larger
amplitude of fingers for this case. We obtain the nonlinear
mode during the simulation as

n̂�t� =

�
0

K

k�̂�k,t�dk

�
0

K

�̂�k,t�dk

, �21�

where the energy density function �̂ is given by

�̂1/2�k,t� = �
0

Y ��
0

1

��x,y,t�dx�eikydy , �22�

K is the number of modes, and Y is the aspect ratio. The
vorticity function � is defined by �39�

� =
1

�T

d�T

dSw
�v

�Sw

�x
− u

�Sw

�y
� . �23�

The nonlinear mode is plotted in Fig. 9. At an early time,
n̂ corresponds to the most dangerous mode given by the lin-
ear analysis. At later times n̂ undergoes significant nonlinear
coarsening where the rate of decay follows an approximate
scaling between t−0.8 and t−1.7. Note that n̂, which includes
the factor 2� in view of the transform Eq. �22�, scales with
the domain length such that n̂=0.2 gives a wavelength of 0.5
in the y coordinate. The magnitude of the wave number for
q=0.5 cm3/min at late times is n̂�0.1, suggesting the pres-
ence of a single unstable finger. This observation is in agree-
ment with saturation contours obtained from the experi-
ments, as shown in Figs. 7�e� and 7�f�.

FIG. 7. Saturation contour in a cross section close to the inlet at
an early time, for �a� M =155, q=0.5 cm3/s, �b� M =303, q
=0.5 cm3/s, �c� M =155, q=1.5 cm3/s, and �d� M =155, q
=3.0 cm3/s. �e� and �f� show contours close to the outlet at late
times for M =155 and 303, respectively, at q=0.5 cm3/s. The wave-
length of unstable structures is compared qualitatively with linear
stability results at early times and with nonlinear results at late
times.

FIG. 8. Saturation contours obtained through numerical simula-
tions. �a� M =155, q=1.5 cm3/min, �b� M =303, q=1.5 cm3/min,
�c� M =155, q=3 cm3/min, and �d� M =303, q=3 cm3/min. Con-
tours are plotted at different times for a given position of the front
along the length of the domain. Unstable fingers produced for M
=303 are slightly smaller but with a larger amplitude. The number
of fingers is also in good agreement with experimental and linear
stability results.
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A more detailed comparison is presented in Fig. 10, which
shows transversely averaged saturation profiles as a function
of the domain length. The Buckley-Leverett solution is plot-
ted for reference, which shows the shock at the mean front
location. Cross-sectional averages are also plotted for the
experiments. Numerical results show a spread of the average
saturation around the mean front due to unstable fingers. Fig-
ure 10 shows that the spread obtained through numerical
simulations give substantial improvement over the 1D model

but still falls short of capturing the larger spread associated
with the experiments. This implies that the amplitude of un-
stable fingers is somewhat greater than that obtained through
numerical simulations for the same set of governing param-
eters.

VI. DISCUSSION

Two-phase flow in porous media continues to be a source
of interest from the physical as well as the engineering per-
spective. Despite a long history of significant research, many
issues of fundamental importance remain unresolved, such as
the link between the microscopic physical mechanisms and
the macroscopic continuum models, as well as the role of
large-scale instability. At the center of the problem is the
classical phenomenological parameter of relative permeabil-
ity, which is either ignored by some researchers, due to the
lack of a rigorous theoretical basis �9,14,18,21�, or accepted
by others as a practical solution for large-scale flow prob-
lems �11,20,32,43,44�. Although a measure of theoretical
rigor has been brought to bear on the problem through the
theory of invasion percolation �45�, the validity of equilib-
rium relative permeability has not been evaluated for actual
large-scale flows, particularly in the presence of instability.

The present investigation seeks to establish the missing
link between the pore-scale viewpoint and the practical mod-
eling of large-scale flows, in order to determine the range of
validity of the equilibrium relative permeability, which
would subsequently guide future improvements in the con-
tinuum model. We find that the onset of macroscopic insta-
bility marks the threshold of the unconditional validity of the
macroscopic model. However, the important point is that the
onset occurs for viscosity ratios that are much larger than
unity, and is determined correctly by the stability theory
based on the steady-state relative permeability. This shows
that relative permeability not only is valid for the trivial case
of favorable viscosity ratio �M 	1�, but also is applicable
over a wide range of M 
1. Moreover, the correct determi-
nation of the onset conditions, as well as the initial unstable
mode, provide confidence in the ability of steady-state rela-
tive permeability to help identify unstable displacements
along with the preferred wavelength.

Although there is qualitative agreement between simula-
tions and experiments in the nonlinear regime at late times,
e.g., the nonlinear coarsening characteristics, the correct am-
plitude of viscous fingers is not captured by the current con-
tinuum model. The fact that the initial mode of instability is
determined accurately by the use of steady-state relative per-
meability functions indicates that the deviation from equilib-
rium occurs at late times due to the formation of large-
amplitude fingers. This observation is supported by the
evidence of substantial vorticity generation at the finger tips
�46�, which creates nonequilibrium as well as viscous cou-
pling effects at the pore scale �2,47� by giving rise to large
enough local velocities. The functional form of the relative
permeability functions changes under these conditions. A
previous study �40� shows that both the amplitude and the
mode of instability depend significantly on the functional
form of the relative permeability. Hence, assumptions of cap-

FIG. 9. Nonlinear mode during the simulation for two values
each of M and Ca*. Initially, n̂ is close to the mode given by the
linear stability results but drops rapidly to smaller values. The
coarsening dynamics is governed by approximate scaling, indicated
by the dotted lines, between n̂� t−0.8 and t−1.7.

FIG. 10. Comparison of the cross-sectional average of saturation
along the core length obtained with experiments and Buckley-
Leverett �BL� and direct numerical simulations �DNS�. �a� M
=155, t=0.17 and �b� M =303, t=0.14, at q=0.5 cm3/min. Satura-
tion profile obtained from simulation shows spread around the mean
position of the BL front but falls short of capturing the wider spread
observed in the experiments.
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illary equilibrium, negligible viscous coupling, and momen-
tum exchange �47,48�, underlie the observed discrepancy of
the continuum results in the nonlinear regime.

Our analysis identifies the unstable nonlinear flow as the
regime where efforts to improve the continuum model should
be focused. This requires a detailed consideration of menis-
cus formation and displacement through the microscopic
pore space, the magnitude of shear stresses across fluid-fluid
interfaces, and the level of simultaneous flow through the
pore spaces �49,50�. Analysis of the transient state of these
mechanisms, through which capillary equilibrium is eventu-
ally established, would serve as a basis of the dynamic, or
nonequilibrium, model of relative permeability. Such an un-
dertaking involves experiments and numerical simulations at

the pore scale to construct the dynamic relative permeability
tensor, its consistent reduction to the equilibrium case, and
the verification of the improved model through large-scale
experiments and simulations. Investigation of these issues is
the focus of our ongoing research.
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